
An Alternative to Kubernetes
The Platform.sh PaaS

https://platform.sh | sales@platform.sh

1

And you are still not getting

•	 High-Availability

•	 Security Updates

•	 Backups

•	 Automated generation of staging clusters

•	 Environment Cloning

•	 A web Application Firewall

•	 CDN

2

Introduction

This document has been written for the Enterprise management reader who is experiencing anxiety about

starting, or continuing a Kubernetes project, and wants to understand the likely costs, risks, and alternatives

available to take advantage of containerisation and its benefits to their organisation.

Essentially, we are talking about buy versus build. You might use a framework such as Kubernetes to build your

container based architecture, which is complex and expensive, and at the other end of the difficulty spectrum,

you might just buy a PaaS.

For your information, a PaaS will support many different technologies out of the box, and will allow developers

to concentrate on coding whilst the PaaS handles test environments, deployments to production, resilience in

the live service, scaling etc...well, some of the better ones anyway.

When considering Kubernetes in the first place, a major distraction for many managers can be Docker itself, so

it’s important to understand that it’s not the only container technology available, even though it’s currently the

most popular. However, the domain is fast moving, and much of what was the-next-big-thing 6 months ago, has

already become ‘less interesting’.

Of even greater importance, is that it’s not really about whatever container technology your technical team

is excited about, it’s actually about a better way to manage what you put inside the container, namely the

applications you want deployed and the dependencies they rely on. And whatever big effort you decide to

spend time and effort on needs to have big benefits for your business, which in this case means a better

experience for all the stakeholders involved, those being developers, operations, service management and the

end customer.

This document is based largely on the experiences of Platform.sh PaaS customers who are migrating away from

Kubernetes.

http://Platform.sh

Are you sure there’s not a better way?

Kubernetes is an incredible piece of software,

but also an incredibly complex system. It gives

you the flexibility to run any sort of container

you want, but your infrastructure team will

still need to solve many problems around

the configuration and ongoing management

of those containers and their associated

Continuous Integration (CI) development and

deployment process workflows. This all requires

a lot of effort to build in the first place, and is

then very hard to maintain. If you thought you

were going “all standards”, the reality is that you

are actually embracing a never-ending regime

of DIY.

And that just covers the application build/test/

deploy process. You may well need a costly

Managed Kubernetes Service to then manage

those services in the production environment to

ensure they all stay up and running.

Kubernetes flexibility is actually Kubernetes

complexity

Running vulnerable code in a container is no

safer than running it in a Virtual Machine (VM),

and running vulnerable services (eg. database)

is no easier when they’re inside a Kubernetes

cluster.

Docker and Kubernetes expose interfaces that

3

Management Summary

What does Kubernetes really give you ?

Although Kubernetes comes with ultimate flexibility, you need to build it yourself, whereas a PaaS

introduces many efficiency gains that reduce the cost and complexity of container based hosting in

the cloud, accelerates application delivery, and enables new service propositions quicker. Specifically,

significant PaaS savings relative to Kubernetes would be:

1.	 Avoiding the cost and management overhead associated with building and running Kubernetes,

including the cost and complexity of multiple vendor management tool sets, most of which only

allow your engineering teams to execute manual tasks quicker, as opposed to effectively automating

critical blocks of business process.

2.	 Taking advantage of the cost economies of scale that a PaaS vendor can offer around compute and

storage resources, which can amount to half of what you are paying your hosting vendor direct.

Building your own Kubernetes infrastructure is 5-8 man years of effort and will cost you upwards of

$1.5m, to achieve just a thin layer of container management for a limited set of technologies, benefiting

some aspects of development only. Operating and maintaining it will then cost you a minimum $500k

per annum.

Compared to a market leading PaaS, you will have about 30% of the value for developer workflow, about

40% of the value for infrastructure management, and no SLA for your production services.

Based on our own investment and running costs, allowing your Kubernetes build team to bridge the gap

to a PaaS such as Platform.sh, would take you 40-50 man years of effort, cost you 10 times as much to

build, and several times as much to operate.

look like abstractions and simplicity at first

glance, but what you’re actually buying is a bulk

load of nuts and bolts, which means complexity

and therefore risk. What looks like flexibility

and control, soon becomes very expensive to

maintain and your costs may well skyrocket if

you have to achieve your original objectives.

You can put anything in your (Docker)

container

Docker is based on images, and there are tens

of thousands of container images available.

Trouble is, an image is the result of a script,

so what’s actually in the image is often

questionable. In fact the contents of an image

are so opaque that they are commonly known as

blobs.

Docker makes it easy to package up something

yourself to run, but unless you’re building all

your containers from source, they then become

difficult to maintain. And if you are using blobs

from elsewhere, how can you trust they don’t

contain vulnerable libraries and executables,

or whether or not they are being maintained

properly?

No reproducible build chain or read-only

infrastructure - which will take you many man

years to build

Unless you invest in building a “reproducible

build chain”, you are running services you may

not always know how to update, because once

you deploy your container, there is nothing to

prevent it from changing - it’s just a normal

program, and can write to disk and even update

its own code.

So, you need to ensure you have a repeatable

build process with deterministic results, but also

an “immutable read-only infrastructure” to make

sure once a container gets into production,

nothing can ever change it whilst it’s there.

These two items alone can take several man

months each to plan, and many man years to

build.

Not enough intelligence in the cluster

orchestrator - 2-4 man years to build

Because you wanted something flexible enough

to run any container, you now have all the

uncertainty highlighted above, and this makes

it very difficult for the cluster orchestrator

to know what each specific process is doing

at any one time. Unless everything you are

running is stateless, allowing the orchestrator

to abruptly shut down a container whilst writing

to disk means certain data corruption, and a

catastrophic impact to the application. This

is a key component of container failover and

therefore application resilience, and will take 20-

50 man months to build out properly.

So, do you really need all this flexibility?

There are a lot of advantages to standardising

on fewer technologies, and making your process

management less project specific. You just

don’t need to approach every new project with

a blank sheet of paper, and design everything

around it in deeply specific detail, which will

inevitably be a bigger overhead to maintain.

The majority of your projects should be as

standardised as possible, with only a handful of

exceptions.

And are your requirements really outside the

99% of what most other companies are doing ?

What you are standardising on is also critical

here. Kubernetes allows you to build and

support any possible back-end service,

especially important when your requirement

falls outside the 99% of most commonly

required services. If you think you could make

do with the 99% of what’s out there and already

available, you probably don’t need these

extreme levels of flexibility.
4

5

What are pitfalls of Kubernetes?

What are the right questions to be asking your

technical management teams when deciding

on the best strategic course to set

Kubernetes may seem like an off-the-shelf

product, because there are many artificial use

cases which are extremely easy to show off,

and some of the higher-level distributions really

demonstrate its power as a tool. But it’s still a

very raw tool.

Again, much of what we cover in this document,

we have learned from our customers migrating

from Kubernetes to the Platform.sh PaaS.

What an implementation will and won’t give

you after several man years of build effort

Building a basic Kubernetes/Docker

implementation yourself could take 5 - 8

man years of experienced engineering

developer effort, to achieve just a ‘thin layer

of containerisation process improvement’, for

developer workflows only, and that support a

limited number of technologies.

You still need a lot of DevOps and scarce

knowledge to run it

Ongoing day-to-day operations will require

a team of DevOps and Support staff and will

still include various manual activities such as

configuration management, transferring data

between environments for testing and so on.

Investigating and repairing runtime issues with a

complex Kubernetes cluster requires everything

from specific Kubernetes semantics knowledge,

Docker knowledge, networking and storage

knowledge all the way down to Kernel specific

behavior; all of which are changing very rapidly!

As an example of the level of complexity

your internal users are going to be exposed

to, please take a glance at some of the actual

administrator documentation:

https://kubernetes.io/docs/concepts/cluster-

administration/sysctl-cluster/

A great developer experience will still be a

long way off

Multiple development environments for parallel

feature development workflows (ie. replicating

a PaaS like experience) will be very expensive

due to needing multiple dedicated test servers,

unless delivered with cloning technology in

the Cloud. This is where the vast majority of

developer gains will be achieved, in terms of

accelerating the velocity of new features into

production. Going back to the Kubernetes

cluster orchestrator that we talked about

earlier, without a fine-grained vision of the

status of “stateful services”, performing any

operation that requires consistency will be

very hard without stopping the service. To do

this properly, you need native copy-on-write

support and immutable containers, without

which this sort of operation is going to be hard-

to-impossible to achieve with any degree of

safety plus performance.

The patchwork of underlying services to

manage spells danger

However you build out your Kubernetes

implementation though, you will still have a

patchwork of underlying 3rd party services to

manage, which means many single points of

failure (SPoF), frequent release management,

incoherent roadmaps, additional costs (vendor

cost for your choice of toolsets), no scale

economies against actual compute/storage

resources consumed, additional pressure

on - and expertise required in - the internal

support function, DevOps expertise and

retained knowledge practices including ongoing

Considerations when you build out Kubernetes

https://kubernetes.io/docs/concepts/cluster-administration/sysctl-cluster/
https://kubernetes.io/docs/concepts/cluster-administration/sysctl-cluster/

documentation and staff retention.

No SLA in production, and no high availability

(HA)

And to put the cherry on the cake, a robust

production service SLA is probably not

achievable either – and certainly not high

availability (HA) - without many more man

years of effort. The same is true for resilience

in the persistence layer, and shared cluster

management. This is because Kubernetes was

not originally built for persistent services, in fact

it has a number of built-in assumptions about all

external data services coming with HA included.

Furthermore, any Kubernetes feature not

related to running stateless application services

has only been recently added in, and as an

afterthought it seems. Basically, if your whole

infrastructure wasn’t designed as “cloud native”,

you are out-of-luck.

High initial build investment plus high running

costs

For the basic Kubernetes reference case

described above, your 5 man-year build cost

will approximate $1,350,000. And you will have

something to show for this; your development

teams will have a better development

experience, and your DevOps team will have an

easier time managing the infrastructure, but you

are unlikely to have an end-to-end SLA across

your applications, and definitely no HA.

Diagram above showing high level Kubernetes build and run costs.

Notes: *FTE (Full Time Equivalent), **Fully Burdened includes salary plus 40% for office/employment overhead

140%

Type FTE* Years Salary
Fully

Burdened**
TOTAL

BUILD
Developer

engineer
1 3 $70,000 $98,000 $294,000

Developer

enginner
4,5 1 $90,000 $126,000 $567,000

$861,000

OPERATE
Developer

DevOps
2,5 1 $90,000 $126,000 $315,000

Support 2,5 1 $50,000 $70,000 $175,000

$490,000

TOTAL $1,351,000

Annual support cost plus ongoing development will likely exceed $500,000.

total cost for basic kubernetes implementation

6

Costs of compute and storage resources way

higher than a PaaS alternative

In addition to the initial build and run, you will

likely be buying IaaS/hosting resources at 2-3

times the cost of a PaaS provider, due to a) the

volume discounts they will be receiving, and

b) the higher densities they will be achieving

through balancing larger container workloads.

Based on annual usage of 500 cores, 1TB of

SSD storage and 50 Tb of bandwidth, we

estimate your costs with one of the major global

hyperscaling IaaS providers to be in the region

of $600,000 p.a., compared to roughly 35-45%

of that through a PaaS provider with a few

thousand customers.

Cost benefit analysis of a PaaS versus

Kubernetes

We’re unable to provide you detailed financials

for the Platform.sh PaaS of course, but relative

to the above budget to build out Kubernetes,

your cost-benefit planning assumptions to

create the equivalent experience to a PaaS

would be 10x the total build investment and 7x

the ongoing annual operational cost.

The Kubernetes implementation described in

the previous section will provide you:

•	 30% of the value that a PaaS brings to the

development workflow

•	 40% of the value a PaaS brings to

infrastructure management, ie. NoOps

automation

•	 No uptime SLA for the live services

Considerations when you build out Kubernetes

Kubernetes reference value vs PaaS: workflow, automation & live service

IaaS costs for Compute Storage Bandwidth

100%

Developer workflow

PaaS provider IaaS costs

with Platform.sh

Devops automation

Client IaaS costs

with Platform.sh

Production SLA

with Platform.sh

75%

600.000$

50%

400.000$

25%

200.000$

0%

0$

7

A PaaS is a proprietary service, but shouldn’t expose anything proprietary to you. There should be zero

vendor lock-in. Your developers should be able to describe - in the most succinct way possible - the

requirements of their application, and the PaaS automatically deploys and manages those services.

Should you decide to migrate away from your PaaS vendor, all you will be losing is the automation of

the management layer; your code should run in precisely the same way on a highly-available PaaS using

PostgreSQL or a MySQL cluster as it would with any other hosting vendor direct.

A PaaS should definitely give you an instant fast start for container management, developer workflow,

support for a wide range of commonly required technologies, automated infrastructure management,

automated deployments, automated maintenance, security updates, production service levels, seamless

scaling, high availability, highly optimised resource consumption and cheaper compute/storage.

Platform.sh basically transforms “legacy applications” into apps that have all the qualities of 12 factor

apps*.

•	 The development community will be able to work in a totally different way, enabled by cheap

development, test and staging environments-on-demand and in the cloud. Complete working

copies of master/running sites, as many as required, and each one in less than 30 seconds (with

Platform.sh). This means no more expensive dedicated test environments, zero set-up time for new

environments, disposability of any environments, and super-fast testing and user acceptance of new

features.

•	 Automated infrastructure management means no more DevOps. No more complicated processes to

make things available to the development team for building and testing features.

•	 Failproof deployments straight into production (with Platform.sh).

•	 No-vendor lock-in to underlying tools sets or the IaaS itself. If you ever want to change your PaaS,

you should be able to take your git repositories and YAML file configurations and reuse them

elsewhere.

•	 A 99.99% uptime SLA in production, plus highly available cluster management, probably across a

wide grid of resources. Plus the addition of resources with no live service interruption, for peak traffic

upscaling as an example. (All with Platform.sh)

•	 Included infrastructure / application monitoring, debugging and analysis tools.

•	 24*7 global support function, with experience of seeing and solving many similar implementation

scenarios that look like your own (some PaaS vendors will have thousands of customers who they

are learning from every day). So, whatever the uniqueness of your IT infrastructure, the problems you

may be having are probably already known to them.

•	 Fast evolving roadmap of useful features.

In short, a PaaS will give you much higher productivity across the development teams, considerably

lower costs and better efficiencies in operations, and much better economies for compute and storage

resources, plus predictable pricing.

What you get from a PaaS

* 12 factor apps: https://12factor.net/

8

http://Platform.sh
http://Platform.sh
http://Platform.sh
https://12factor.net/

Other savings and gains a PaaS will give you

When choosing a PaaS vendor, you should be asking them how they are able to evidence productivity

improvements, better service management and lower costs, and if they are not yielding data driven

evidence such as the following, buy from somebody that is:

METRIC CATEGORIES EVIDENCE FROM CUSTOMERS

Fast development

Set-up time improvement (new system) Instant, months to days, 720x faster

Increased branching / better workflow Worlds apart, 10-12x better

Developer productivity 20-40%, 100%, 300% more productive

Feature sign-off & UAT acceleration 500%, 700%, 14x faster

Fast deployment

DevOps & ticket reduction 80-100% less SysAdmin and fraction of the tickets

Deployment time reduction Faster & easier, never fails, 1500%

Deployment frequency improvement
1 a day to 10 per dev a day, 7x faster, every 2

hours

Live Service & Overall Costs

Live performance
Awesome during peak, Phenomenal, Vast

improvement

Interruptions and downtime in production Zero, minimal

Overall cost reduction 60%, 4-5 FTE savings, 38%, 40%, 80%

What the PaaS customers should be saying

CANADIAN FOOTBALL LEAGUE

“Our focus is on creating business value, so

it’s important for my team to concentrate on

writing code and not spend time worrying

about deployment scripts, configuring and

patching servers, and DevOps. With Platform.

sh, putting new code live is as simple as a

single command.”

BRITISH COUNCIL

“Weekly changes used to take over 2.5 hours

for all 130 sites around the world, but now

takes less than 30 minutes. We can test and

deploy emergency patches to all sites in

less than 2 hours now, which was impossible

before.”

SULLY SYED

HEAD OF OPERATIONS

NICK MORGALLA

HEAD OF OPERATIONS

9

The Use Case for both PaaS and Kubernetes

10

Is a PaaS absolutely the right decision for your organisation.

Are you sure you’re not missing a trick by passing up Kubernetes.

If your organisation believes a container based approach will benefit their implementation of various

technology stacks, and that an automation framework is required to make this cost effective.

The following Use Cases are suited to a PaaS:

•	 When you are looking for a proven container based solution that will have a radical effect on the

development teams’ productivity with automated deployments to a Highly Available live service.

•	 If you want to run anything with a persistent workload, such as a database that require any level of

consistency. To do this with Kubernetes you need to bolt various additional tools onto it.

•	 Single applications (OSS PHP Frameworks Drupal, Symfony, Ruby, Laravel, Magento etc.).

•	 Complex applications (Headless Drupal + Node’js).

•	 Micro-services applications with multiple persistent data backends.

•	 Enterprise NodeJS architectures.

•	 Enterprise with many technology stacks and an army of DevOps, Operations & Systems

Administrators.

•	 Single-Tenant Software vendors launching cloud offerings.

•	 Multi-tenant SaaS vendors that want to simplify their operations and give their developer

communities a fantastic new user experience.

…and these Use Cases are more suited to Kubernetes:

•	 If you need to run very large numbers of stateless clusters in a resilient fashion (this is the original

Google Use Case fo Kubernetes)

•	 Large streaming workloads or Big Data workloads.

•	 The ability to run absolutely any service, built in any way you want, ie. the 1% of common

requirements.

•	 You have a team of valuable DevOps and Systems Administration staff, that you would rather keep

in house and in any case put to good use. Some European countries have onerous employment law

that prevents the easy exit of staff, and other countries make it expensive in terms of redundancy

payments.

REISS

“Platform.sh was the best decision I ever

made. I just can’t imagine working without it

now. The triple redundant architecture just

works and the infrastructure is so fast and so

performant.”

TES GLOBAL

“We no longer pay for massive permanent

resource allocations to meet unknown future

peak traffic, because we know we can rely

on a robust stack which scales seamlessly in

minutes when needed.”

PETER WARD

DEVELOPMENT MANAGER

AIDEN GREY

HEAD OF OPERATIONS

